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A B S T R A C T

Super-resolution (SR), aiming to super-resolve degraded low-resolution image to recover the corresponding
high-resolution counterpart, is an important and challenging task in computer vision, and with various
applications. The emergence of deep learning (DL) has significantly advanced SR methods, surpassing the
performance of traditional techniques. This paper presents a comprehensive survey of DL-based SR methods
encompassing single image super resolution (SISR) and multiple image super resolution (MISR) methods, along
with their applications and limitations. In SISR methods, addressing individual images independently, we
review blind and non-blind SR methods. Additionally, within MISR, we delve into multi-frame, multi-view,
and reference-based SR methods. DL-based SR methods are categorized from the application perspective and
a taxonomy is proposed. Finally, we present research prospects and future directions.
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1. Introduction

Super-resolution (SR) aims to recover a high-resolution (HR) im-
age from a low-resolution (LR) input. Although imaging devices have
simplified visual data acquisition, the resulting images often suffer
from blurring and blocky effects due to degradations introduced by the
devices, image processing algorithms, and image compression [1]. SR
has long been a fundamental problem in computer vision with practical
applications across various fields. Early methods [2,3] involving ex-
plicit HR image reconstruction models were inadequate for real-world
scenarios. With the rise of deep learning (DL), DL-based SR methods
have shown great potential in addressing SR tasks. Dong et al. [4]
pioneered the use of a super-resolution convolutional neural network
(SRCNN) for single image super-resolution, marking a breakthrough in
the field. SRCNN autonomously learns an end-to-end mapping between
LR and HR images, outperforming traditional methods by margins of
0.15, 0.17, and 0.13 dB in terms of peak signal-to-noise ratio (PSNR)
across three diverse datasets, i.e., Set5 [5], Set14 [6] and BSD200 [7].
However, SRCNN requires paired LR-HR images for training and in-
volves extra pre/post-processing, which limits its practicality. Since
then, DL-based SR methods have been extensively studied.

SR plays a crucial role as a pre-processing step, enhancing the
performance of downstream tasks especially for low-resolution im-
ages [8]. Researchers made the attempts to improve the performances
of low-quality [9] or small object detection [10] and classification [11]
with the utilization of SR. Thus, focusing on SR’s diverse applications,
rather than just HR reconstruction accuracy, is essential. However,
previous works and surveys have concentrated on the methods and the
reconstruction performance on synthetic data, with little discussion on
real-world applications. This paper reviews DL-based SR methods from
recent years with an emphasis on their practicability, to help readers
understand their application scopes and limitations.

Existing SR solutions include both single-image (SISR) [1,12] and
multiple-image SR (MISR) [13]. SISR processes each image indepen-
dently, while MISR utilizes relationships between multiple images for
super-resolution. Early research focused on SISR, and MISR is gaining
attention due to the growing popularity of multimedia data. This
paper introduces a framework dominated by SISR and MISR to offer
a comprehensive survey of recent advances in DL-based SR methods.

Several surveys on DL-based SR have been published [1,12–14].
Surveys [1,12,14] provide overviews of SISR methods. The former [1]
focuses primarily on the blind SR methods while the latter two [12,14]
introduces both non-blind and blind methods. The recent survey [13]

reviews the progress on video super-resolution methods. The related

2 
methods as described in [13] are referred to as multi-frame super-
resolution (MFSR), which are categorized as a type of MISR method.
However, these surveys often focus on technical advances in neural
network architectures and optimization objectives, with less emphasis
on experimental settings and applications. Additionally, these surveys
typically cover only a portion of SR methods, leading to potential
confusion for readers. This paper reviewed representative DL-based SR
methods in both SISR and MISR topics, categorizing them by method
characteristics and discussing the experimental settings and practicabil-
ity, while technical advances are only briefly introduced. A taxonomy
is established and further research directions are discussed. The con-
tributions of this paper are: (1) a comprehensive review of DL-based
SR methods, including the latest developments, (2) categorization of
methods from an application perspective, providing a taxonomy to
guide method selection, and (3) a focus on experimental settings and
practicality, with visual analysis and discussions on key points, offering
prospects for future research.

2. Outline

Super-resolution (SR) has been a longstanding challenge with sig-
nificant research efforts. As depicted in Fig. 1, the development of
SR can be divided into two periods: non-deep and deep learning.
The key turning point was the introduction of SRCNN by Dong et al.
in 2014 [4], which combined deep learning with SR. In 2019, Gu
et al. [15] introduced the blind SISR method, iterative kernel correction
(IKC). Guo et al. [16] proposed the MFSR method which leverage inter-
frame information for better HR restoration, marking the emergence of
MISR methods. Other notable MISR methods, such as reference-based
SR (RefSR) method [17] and multi-view SR (MVSR) [18] method, are
proposed. While achieving superior performance, MISR methods have
become the significant ideology for SR.

As illustrated in Fig. 1, a taxonomy classifies DL-based SR methods
based on input and experimental settings, highlighting their application
scenarios. DL-based SR methods are categorized into SISR (Section 3)
and MISR (Section 4). SISR includes non-blind methods with known
degradation models and blind methods with unknown models. MISR
methods are divided into MFSR, MVSR, and RefSR, depending on input
image relationships. Fig. 1 provides typical implementations of the
methods with the annotations. Applications of the SR methods are
discussed (Section 8) and future directions of SR are presented in the

survey (Section 9).
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Fig. 1. Outline of our survey, including evolution, methodology, future works, and applications of SR methods.
3. Single image super-resolution methods

Regarding the LR image as the degradation of its HR counterpart,
SISR methods devote to accomplishing the inverse of the degradation
process. Degradation modeling plays a central role in the construction
of the HR-LR mapping. In most cases, the degradation is the superpo-
sition of blurring, down-sampling, and noise, which is represented as:

𝑦 = (𝑥 ⊗ 𝑘) ↓𝑠 +𝑛 (1)

where, x is the HR image, y is the LR image, s is the down-sampling fac-
tor, k is the blur kernel, n is the noise, ⊗ is the convolution operation.
Degradation modeling is then to determine the parameters k and n.
The uncertainty on degradation makes SISR to be an ill-posed problem
(e.g., multiple-to-multiple mapping). By identifying the degradation
process, SISR is further transformed into a one-to-one mapping. SISR
methods solve the inverse to reconstruct the HR.

3.1. Non-blind single image super-resolution methods

3.1.1. Non-blind SISR with single degradation model
The DL-based SR technique originated with SRCNN [4], a non-

blind SISR method using three CNN layers for patch extraction, feature
representation, non-linear mapping, and HR reconstruction. Key de-
velopments include very deep super-resolution (VDSR) [19], which
employs a residual learning strategy to enhance training convergence
and accuracy, and Laplacian pyramid super-resolution network (Lap-
SRN) [20], known for large-scale iterative up-sampling with supervised
residuals. For greater detail at high magnifications, diffusion models
(DM) like the denoising diffusion probabilistic model used in super-
resolution via repeated refinement (SR3) [21] improve image-to-image
translation. Subsequent advancements have enhanced diffusion model
efficiency by operating in residual [22,23] or latent spaces [24], opti-
mizing convergence and computational efficiency. These methods rely
on a singular, fixed degradation model, restricting their effectiveness in
varied real-world applications.

3.1.2. Non-blind SISR with multiple degradation models
This study extends the investigation to multiple degradations.

VDSR [19] implements multi-scale training to handle various down-
scale factors. The unfolding super-resolution network (USRNet) [25]
and the deep plug-and-play super-resolution (DPSR) [26] address SISR
within the MAP framework, promoting iterative methods to manage
different blur kernels and downscale factors in Eq. (1), as depicted in
Fig. 2(a). These methods, however, face challenges with LR images that
have multiple or combined degradations. To tackle this, degradation
information is encoded and integrated into the input for one-to-one
3 
mapping [27,28]. Wang et al. [29] introduced the spatial feature trans-
form (SFT) to adjust feature maps based on degradation. While effective
for multiple degradations, these methods depend on synthesized HR-LR
pairs and assume a known degradation process. Non-blind methods are
not the focus of the survey. Only a brief introduction is presented to
ensure comprehensiveness.

3.2. Blind single image super-resolution methods

Blind methods are more practical than non-blind ones as they do
not rely on a predefined degradation process. A key aspect is degra-
dation estimation, learned during training, and used during testing for
SISR. Blind SISR methods are classified into those with and without
ground-truth supervision, and those using implicit modeling. The first
two combine degradation estimation with a non-blind SISR method,
differing in learning strategies, while the latter learns degradation
implicitly.

3.2.1. Blind SISR with degradation modeling under the ground-truth super-
vision

With a requirement of the ground-truth degradation models, degra-
dation estimation is learned in a supervised manner. The MAP frame-
work motivates iterative pipelines, differentiating between non-blind
and blind settings, as shown in Fig. 2. In Eq. (1), there are three
variables, i.e., 𝑥, 𝑘 and 𝑛, to be determined in blind SISR. By using
a denoise algorithm, blind SISR only needs to focus on solving 𝑥
and 𝑘. The deep alternating network (DAN) [30] employs two CNNs
– restorer and estimator – updated iteratively for blind SISR. [38]
improves DAN by iterating in feature space. The IKC method [15] uses
a predictor to estimate blur kernels from LR images and a corrector to
refine them before generating HR images. The kernel-oriented adaptive
local adjustment (KOALAnet) [31], a non-iterative method, enhances
SR by estimating degradation kernels with a discriminator network,
as illustrated in Fig. 3(a). Other non-iterative methods [39] estimate
reformulated degradation models, but KOALAnet excels at handling
spatially-variant degradations. While MAP-based methods are limited
by the need for ground-truth degradation models, KOALAnet addresses
this with a predefined kernel space. However, practical concerns re-
main regarding the complexity, additional time costs, and modeling of
complex degradation processes with finite kernels.

3.2.2. Blind SISR with degradation modeling without the ground-truth su-
pervision

These methods eliminate the need for ground-truth degradation
models by extracting internal statistics from a single image for degra-
dation estimation. Michaeli and Irani [40] suggest that the optimal
SR-kernel maximizes patch similarity across scales. Based on the priori,
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Fig. 2. Iterative pipelines of MAP-based SISR methods in (a) non-blind and (b) blind settings. For example, USRNet [25] and DPSR [26] are non-blind SISR methods that adopt
the pipeline in (a). DAN [30] is a blind SISR method that adopt the pipeline in (b).
Fig. 3. Frameworks of blind SISR methods. (a) non-iterative methods with kernel discriminator, KOALAnet [31]. The reconstruction loss in KOALAnet is not indicated in the
figure for simplicity. (b) ZSSR [32], input image and the down-scaling image are used to learn image-specific relation. (c) AMNet-RL [33], the kernel estimation is optimized by
reinforcement learning. (d) and (e) indicate implicit degradation modeling using unpaired images. (d) generate HR-LR pairs with unpaired inputs. (e) CinCGAN [34] decouples the
denoising and up-sampling processes. (f) Zhou et al. [35], kernel generation using the GAN framework.
the zero-shot super-resolution (ZSSR) method [32], and similar self-
supervised approaches [41], use the input image alone to create HR-LR
pairs for training and result prediction, as shown in Fig. 3(b). Ker-
nelGAN [36] estimates degradation models based on patch similarity,
serving as a plug-and-play kernel estimator combined with ZSSR, while
Liang et al. [42] improved this approach with a normalizing flow-
based kernel prior. Without direct supervision, degradation models can
be estimated through methods like reinforcement or self-supervised
4 
learning, with approaches varying in assumptions about degradation
consistency within and across images, employing strategies like con-
trastive [37,43] and metric learning [44] to refine SR models. Another
method [45] involves estimating the blur kernel with self-supervised
learning, relying solely on the LR input. In the adaptive modulation
network with reinforcement learning (AMNet-RL) [33], the kernel esti-
mation is optimized by reinforcement learning (Fig. 3(c)). AMNet-RL
incorporates perceptual performance into the optimization process,
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Table 1
Summary of Single Image Super-Resolution (SISR), methods, settings and practicability.
Method Setting Validation dataset Application scenario Practicability

description

SRCNN [4] Paired HR-LR images with a
known degradation model

Synthetic image Predefined
degradation model

Impractical

VDSR [19],
USRNet [25],
DPSR [26],
[27–29]

Paired HR-LR images with
known degradation models

Synthetic image Predefined multiple
degradation models

Impractical

DAN [30],
IKC [15],
KOALAnet
[31]

Paired HR-LR images with
known degradation models
only for training

Synthetic image Predefined multiple
degradation models

Impractical

ZSSR [32],
KernelGAN
[36]

LR images Real image Corresponding
patches with similar
distributions

Practical

DASR [37] LR images Synthetic image Same degradation
model within each
image while diverse
models among
different images

Practical for
special cases

AMNet-RL
[33]

LR images Synthetic image Quantified
perceptual
performance

Practical for
special cases

[35] Unpaired HR-LR images Real image Degradation process
maintaining
high-frequency
details

Practical

DM-based
methods
[21–24]

Paired HR-LR images with a
known degradation model

Synthetic image Predefined
degradation model

Impractical
f
r
f
t

4

p
t
F
a
b

facing challenges posed by complex degradations and the difficulty
in evaluating SR performance. The methods mentioned in this section
offer increased practicality. However, each has specific limitations, as
summarized in Table 1.

3.2.3. Blind SISR with implicit degradation modeling using unpaired images
SISR with unpaired images is challenging but is close to real-world

setting. Generative adversarial networks (GANs) offer a feasible solu-
tion by capturing latent information. As shown in Fig. 3(e), the cycle-
in-cycle GAN (CinCGAN) [34] decouples denoising and up-sampling
using two CycleGANs. However, training such a two-stage GAN-based
method can be challenging due to its complex network structure.
A more lightweight method was proposed by Liu et al. [46], using
an invertible neural network (INN) to handle degradation and SR as
reverse processes.

Other methods shown in Fig. 3(d) generate HR-LR pairs with un-
paired inputs using powerful generators. Bulat et al. [47] designed a
unified framework with two GANs—one for learning the degradation
model and another for training SR with paired image. The domain
gap exists between generated LR and real LR images. To alleviate this
problem, unlabeled real LR images are incorporated into SR model
training for domain adaption [48]. Fritsche et al. [49] introduced a
down-sample GAN (DSGAN) to generate LR images that match source
characteristics, while Zhou et al. [50] further improved domain trans-
formation with a color-guided network. Despite their potential, these
methods face limitations in real-world scenarios, such as the need for
large-scale data and challenges in GAN training and convergence.

4. Discussion on SISR methods

The methods reviewed in Section 3 are summarized in Table 1,
which categorizes their feasibility as ‘‘impractical’’, ‘‘practical for spe-
cific cases’’, or ‘‘practical’’. Methods like SRCNN, which rely on paired
HR-LR images with known degradation models, are deemed ‘‘imprac-
tical’’ because these conditions are rarely met in real-world scenarios,
and validation is done only on synthetic datasets. In contrast, methods
like ZSSR and DASR, which make more realistic assumptions and
are validated on real images, are considered ‘‘practical for specific
 i

5 
cases’’ but still have limited applicability. Methods designed for broader
real-world use are labeled ‘‘practical’’.

Note that this is not a traditional classification but rather a de-
scription of method practicability. It does not reflect the method’s
application extent or performance but instead indicates how well it
aligns with real-world scenarios and its potential for practical use. This
section aims to elucidate the fundamental principles of SISR methods
by highlighting key aspects.

4.1. How to increase resolution during SISR?

Early SISR methods [20,51] use interpolation to increase image
resolution, followed by deep CNNs to recover details. Later methods
replaced interpolation with learning-based techniques, like transposed
convolution and sub-pixel layers [14], enabling end-to-end training.
Transposed convolution increases resolution by expanding the image
with zeros and applying convolution, while the sub-pixel layer upsam-
ples by generating multiple channels through convolution and reshap-
ing them. Within the sub-pixel layer, a convolution is firstly applied
for producing outputs with 𝑠2 times channels, where 𝑠 is the scaling
factor. Assuming the input size is ℎ × 𝑤 × 𝑐, the output size will be
ℎ×𝑤× 𝑠2𝑐. After that, the reshaping operation is performed to produce
outputs with size 𝑠ℎ× 𝑠𝑤× 𝑐. The sub-pixel layer has a larger receptive
ield than the transposed convolution layer. Meanwhile, due to the
eshaping operation in the sub-pixel layer, blocky regions in the output
eature/image share the same receptive field, resulting in artifacts near
he boundaries of different blocks.

.2. What role does degradation model play in SISR?

Accurate degradation model estimation is crucial for SR model
erformance; errors can drastically reduce results. Gu et al. [15] noted
hat SR models are highly sensitive to estimation errors, as shown in
ig. 4, where kernel mismatches lead to over-smoothing or ringing
rtifacts. Only the correct blur kernel produces natural results. Non-
lind SISR methods use identified models to generate paired HR-LR

mages or guide the SR process, while blind methods estimate the
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Fig. 4. SR sensitivity to the kernel mismatch [15]. 𝛿𝐿𝑅 denotes the kernel used for downsampling and 𝛿𝑆𝑅 denotes the kernel used for SR. In the upper-right region, 𝛿𝑆𝑅 < 𝛿𝐿𝑅,
which means that the kernel used for SR is smoother than the real one. In the lower-left region, 𝛿𝑆𝑅 > 𝛿𝐿𝑅, which means that the kernel used for SR is sharper than the real one.
In the diagonal, correct blur kernels are used.
degradation model explicitly or implicitly. Estimation approaches in-
clude supervised [15,30,31], self-supervised [37], reinforcement [33],
and adversarial [35] methods, but degradation estimation is ill-posed.
As mentioned in [1], different LR inputs may correspond to the same
HR and vice versa. Degradation estimation is still an open problem
especially in real application scenarios.

4.3. How to incorporate degradation model into the input of CNN?

There are primarily two ways to incorporate degradation model.
The first [15] is to directly concatenate degradation maps with the
feature maps. The second [28,31] is to transform the feature maps
with the parameters learned as the representation of the degradation.
The first deals with more complex degradation models, especially for
those which vary in different parts of an image. However, the stretched
degradation maps are not the real images, and they do not include
image information. Thus, the first method would bring unsuspected
noise. In the second method, transformation layers work similar to the
Batch Normalization (BN) layer. The second method is learning-based
and is particularly suited for deeper SR models.

5. Multiple images super-resolution methods

5.1. Multi-frame super-resolution methods

In MFSR methods, multiple continuous video frames 𝑦𝑡−𝑁 , …, 𝑦𝑡−1,
𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+𝑁 are captured where N is the time radius. MFSR aims
to reconstruct the HR frame 𝑥𝑡 at time t with the LR frames. Similar
to SISR, the degradation process is modeled, which is represented
as [2,3,61]

𝑦𝑡+𝑖 = 𝑆𝐾𝐹𝑡→𝑡+𝑖𝑥𝑡 + 𝑛𝑡+𝑖, 𝑖 ∈ [−𝑁,𝑁] (2)

where, S represents the down-sampling scale, K represents blur opera-
tion, F is the warping operation with the motion from 𝑥𝑡 to 𝑥𝑡+𝑖, 𝑛𝑡+𝑖 is
the noise.
6 
MFSR typically involves an alignment procedure to extract spatial–
temporal information. This process aligns features across frames by
choosing a reference frame, extracting features from each frame, cal-
culating the transformations, and applying them to achieve alignment.
The aligned frames are used for feature extraction and HR reconstruc-
tion. MFSR methods are categorized into the following groups.

5.1.1. Non-blind MFSR with explicit alignment
In non-blind MFSR, known degradation models generate synthetic

HR-LR pairs, necessitating precise frame alignment. The motion es-
timation and motion compensation (MEMC) pipeline estimates and
aligns inter-frame motion as shown in Fig. 5(a). While traditional
MEMC uses optical flow [52,62] for motion estimation and bilinear
interpolation for compensation, newer approaches employ CNN archi-
tectures like recurrent convolutional network [63], ConvLSTM [64],
and bidirectional recurrent networks [65,66] to handle MEMC and SR
simultaneously. However, MEMC methods can struggle with motion
inaccuracies, especially under significant motion or lighting changes,
impacting SR quality. Learning-based deformable convolution meth-
ods [67,68] address these issues by adapting receptive fields, though
they require more computational power. Generally, the constraints of
non-blind settings limit their practicality in real-world applications.

5.1.2. Blind MFSR with explicit alignment
Blind MFSR reconstructs HR images without known degradation

models. Traditional approaches use priors [2,3], whereas deep-learning
methods [69] employ CNN architectures to estimate degradation. While
traditional methods [2] assume a consistent blur kernel across frames,
advanced techniques [53,54] estimate variable kernels per frame using
CNNs in a supervised manner, as shown in Fig. 5(b). Based on the
estimated blur kernel, [53] allows for the construction of intermediate
latent HR images, enhancing HR restoration. Methods like [70] com-
bine blur estimation [30] with non-blind techniques [67] to implement
blind MFSR without needing kernel ground-truth. Additionally, GANs
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Fig. 5. The frameworks of the MISR methods. (a) MSFR methods [52] with MEMC pipeline, MEMC estimates inter-frame motion and accomplishes alignment based on motion
information. (b) MFSR methods [53,54] estimate the blur kernel with a CNN in a supervised manner. (c) Self-supervised MFSR method [55] only uses LR frames to train the blur
kernel estimation network and the SR network. (d) Nonblind MFSR with implicit alignment [56,57], which involves feature extraction and spatial–temporal information extraction.
(e) MVFR in appearance map reconstruction [18,58], aggregates multi-view redundancy from all LR input images and computes an super-resolved texture atlas. (f) MVFR in
stereoscopic reconstruction [59,60], adopts a symmetric architecture with stereo feature interaction.
are used for video super-resolution [71] to extend blind SISR methods
by exploiting high-order feature relations. Unlike other approaches that
require paired images, a self-supervised method introduced in [55]
only needs LR frames to train both the blur kernel estimation and SR
network, as depicted in Fig. 5(c). Blind MFSR methods, integrating
motion and degradation model estimation, offer enhanced practicality
for real-world SR tasks.

5.1.3. Non-blind MFSR with implicit alignment
In non-blind settings with predefined degradation models, methods

extract spatial–temporal information from multiple frames, as shown in
Fig. 5(d). These processes involve either extracting features from each
frame individually before pooling them across feature maps or simply
concatenating frames for simultaneous feature and spatial–temporal
extraction [72]. Advanced CNN architectures like 3D convolution [73]
and recurrent networks [16] enhance this process, with adversarial
learning [74] further improving SR realism. However, these methods
are constrained by the need for known degradation models, which
complicates their application in dynamic MFSR scenarios. Blind set-
tings, in contrast, use implicit alignment to improve efficiency and
applicability, with techniques such as down-sampling and up-sampling
networks [75] that allow MFSR using only LR frames, similar to blind
SISR methods [41]. This integration of blind SISR principles into MFSR
highlights the critical role of inter-frame information and positions
implicit alignment in blind settings as a viable approach for practical
real-world applications.
7 
5.2. Multi-view super-resolution methods

Multi-view super-resolution (MVSR) uses multiple independent
measurements of the same sample to enhance estimation accuracy, han-
dling significant variations among input images, unlike MFSR which
deals with minor motion-related differences. Typical applications in-
clude reconstructing appearance maps from calibrated LR images [18,
58] and HR stereo images from LR counterparts [59,60]. As shown in
Fig. 5(e), the method [18] first aggregates redundancy across all LR
images to create a super-resolved texture atlas, then enhances it using
statistical priors. In stereoscopic reconstruction, the methods [59,60]
use symmetric dual-branch architectures for left and right views, as
Fig. 5(f) shows. Stereo feature interactions are embedded in each step
to utilize the correlation information in stereoscopic images. To further
stress the correspondence between cross views, an edge-guided stereo
attention mechanism is designed in [59] and a disparity loss in [60]. In
MVFR, addressing the efficient use of input image correlations remains
a challenge, with most methods [18,58,59] requiring additional inputs
that increase computational demands, suggesting potential areas for
enhancement.

5.3. Reference-based image super-resolution methods

Reference-based super-resolution (RefSR) uses an HR reference im-
age to enhance the resolution of a similar-viewpoint LR image by
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Table 2
Summary of MISR methods and the applications.
Method Setting Validation dataset Application scenario Practicability

description

Non-blind MFSR
methods with
explicit alignment
[52], and those
with implicit
alignment [56]-[74]

Paired HR-LR frames with a
known degradation model

Synthetic video frames Predefined
degradation model

Impractical

[2] LR frames Real-world video sequences The same blur
kernel

Practical for
special cases

[53] Paired HR-LR frames with known
degradation models only for
training

Synthetic video frames Predefined multiple
degradation models

Impractical

GVSR [54] Synthetic and real-world
video frames

Practical for
special cases

[70] Paired HR-LR frames with known
degradation model

synthetic video frames Predefined
degradation models

Impractical

[55] Unpaired HR-LR frames Synthetic and real-world
video frames

Corresponding
patches with similar
distributions

Practical for
special cases

[75] Input LR frames synthetic video frames practical for
special cases

[18] Data pair consisting of calibrated
LR images and the HR texture
map

Synthetic images Predefined multiple
degradation models

Impractical

[58] Paired HR-LR images and the
corresponding normal maps

Synthetic images Predefined multiple
degradation models

Impractical

MESFINet [59],
IMSSRnet [60]

Data pair consisting of LR stereo
image pair and HR stereo image
pair, and additional edge
probability maps in [59]

Synthetic images Predefined multiple
degradation models

Practical for
special cases

RefSR methods [76] Data pair consisting of LR image,
reference image, the
corresponding HR image, and
occasionally up-sampling and
down-sampling versions of the
input images

Synthetic images Predefined multiple
degradation models

Practical for
special cases
utilizing the HR reference’s rich texture to compensate for details lost
in the LR image, thus easing the ill-posed nature of SISR and enhancing
performance. A major focus of RefSR is integrating reference informa-
tion through feature alignment and correspondence matching. Feature
alignment typically involves aligning the reference and LR feature maps
using optical flow estimators [76] or deformable convolution [77].
In [78], Ref and LR images are segmented into patches, matched by
cosine distance [79], and then coarsely warped and finely aligned.

Correspondence matching methods search for useful information
in the reference image based on similarities [17]. Subsequent tech-
niques [80] perform this matching in feature space to handle color and
illumination variances, using methods like cosine distance for multi-
level matching and creating swapped feature maps to assist in resolving
LR images. The transformer architecture in [81] treats LR and Ref
images as queries and keys, enhancing deep feature correspondence
through attention, transferring relevant textures from the reference to
the LR image. [82] explicitly deals with transformation gap and reso-
lution gap in the matching by using the proposed 𝐶2-matching. [83]
erforms 𝐶2-matching in a coarse-to-fine manner, achieving improved
eal-time performance. The success of RefSR depends on the precise
onstruction of correspondences between the LR and reference images,
ith errors significantly impacting SR quality. Aforementioned MISR
ethods are summarized in Table 2.

. Discussion on MISR methods

.1. How multiple inputs improve SR performance compared with single
nput?

Multiple inputs in MFSR, derived from sequential frames, capture
ubtle differences to preserve dynamics lost with single static inputs,
8 
also mitigating overfitting risks associated with deep CNNs [72]. In
MVSR, images from different views provide more detailed information
compared to MFSR, enhancing SR performance beyond what a single
view offers. In RefSR, an HR reference image supplements the LR input
with additional high-frequency information, easing the challenges of
SISR.

6.2. How multiple inputs are combined and used in different scenarios?

Effectively utilizing multiple inputs is key. For instance, aligned
images can be concatenated as the SR model’s input, and this can
also be done in the feature space [73]. In MFSR, inputs are aligned
using motion information or through implicit feature extraction before
concatenation for spatial–temporal analysis. In MVSR, fusion is guided
step-by-step by edge information [59] or disparity loss [60]. In RefSR,
aligned or matched features are concatenated [78] to enhance SR
results.

6.3. How to obtain the reference image in RefSR?

Reference images can be obtained from various sources like photo
albums, video frames, web image search, etc. In [78], the RefSR is
applied to images captured by the smartphone which has dual cameras
with wide-angle and telephoto lenses, each with different field of
views (FoV). The quality of RefSR may significantly decline when the
reference image is less similar to the LR input. An elegant matching
scheme enables the model to gracefully degrade its performance to that
of SISR when confronted with less relevant Ref inputs.
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7. Datasets, metrics, and performance

7.1. Datasets

The datasets involved in SISR and MISR tasks are summarized in
Table 3. Popular SISR datasets include DIV2K [84] and Flickr2K [85],
featuring 2K resolution images. Common benchmarks for SISR eval-
uation are Set5 [5], Set14 [6], BSD100 [7], Urban100 [86], and
Manga109 [87]. The datasets [5–7,84–87] synthesize LR images from
provided HR images for SISR experiments. Real-world datasets [88,89]
involve both LR and HR images captured with specific techniques,
serving as vital benchmarks for real-world SISR method evaluation.
Details of these SISR datasets are in the upper portion of Table 3.
For MISR, the REDS dataset [90], part of the NTIRE 2019 Challenge,
includes 100-frame video sequences. Vimeo-90K [91] is divided into
two subsets: Triplet dataset and Septuplet dataset. Septuplet dataset
is for MISR task such as denoising and deblockingg, which consists of
91701 7-frame sequences. Other MISR benchmarks include Vid4 [2]
and SPMCS [64], are two common benchmark datasets for MISR
evaluation. The MISR datasets mentioned above are detailed in the
lower portion of Table 3.

7.2. Metric and performance

PSNR and SSIM are two common metrics to evaluate the per-
formance of SR methods, which are calculates as folows. 𝑃𝑆𝑁𝑅 =
10𝑙𝑜𝑔10

(

𝑀𝐴𝑋𝐼
2

𝑀𝑆𝐸

)

, where, 𝑀𝐴𝑋𝐼 represents the max value in the image,
MSE is the mean square error between two images. SSIM evaluates the
structural similarity between two images. 𝑆𝑆𝐼𝑀 = (2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇2𝑥+𝜇2𝑦+𝐶1)(𝜎2𝑥+𝜎2𝑦+𝐶2)
,

here, 𝐶1 and 𝐶2 are constants, 𝜇 and 𝜎2𝑥 are the mean value and the
ariances, respectively, 𝜎𝑥𝑦 is the covariance matrix between 𝑥 and 𝑦.

Directly comparing non-blind and blind methods is challenging due
o their different setups. Performance comparisons in Table 4 show non-
lind methods generally outperform blind ones, with the latter facing
hallenges due to unknown degradation models. The ZSSR method [32]
cores the lowest due to its simplicity and real-world applicability. Ta-
le 5 illustrate the performances of MISR methods, revealing that while
ISR methods may show over-smoothing or artifacts, MFSR methods
educe these issues using multiple frames. RefSR methods deliver the
ighest visual quality by leveraging HR reference.

. Applications of SR

Previous sections highlight significant advancements in SR, but
ome methods rely on known degradation models, limiting their real-
orld applicability despite excellent performance on synthetic data.
his section explores practical SR applications derived from real-world
cenarios.

.1. Applications of SISR methods

SISR without Sufficient Data Pairs. Synthetic methods are vital
n data augmentation and pair generation, especially when training
ata is scarce. Various synthetic approaches for image restoration tasks
nclude modifying well-resolved lateral slices to mimic anisotropic axial
lices when real biological images are not available [95], and generat-
ng time-series LR images using calibrated parameters of fluorophores
nd stochastic models [96]. Physical noise models are used to create
ealistic single-photon images [97]. The models trained on synthetic
ata could perform well on real-world tasks.
SISR with Modality Gap. SR applications extend beyond spatial

esolution improvement to other domains, such as cross-modality SR. A
cene of cross-modality SR is discussed in [98], where the microscopic
mages of one modality can be transformed to match the resolution ob-

ained from the other modality. Another task is cross-modality imaging, c

9 
here the confocal microscopy images can be transformed to match
hich obtained by the stimulated emission depletion (STED) micro-

cope. In cases where paired data from different microscopic modalities
s hard to obtain, unpaired data is used for domain adaptation. A task-
ssisted cycleGAN model [99] transforms fixed cell images to live cell
mages, facilitating domain adaptation with unpaired training data.

.2. Applications of MVSR methods

In the scenarios, the sample can be imaged by two or more cam-
ras, which provides supplementary information for image SR. Guo
t al. [100] proposed optical microscopy image SR methods by fusing
ulti-view images. It is based on Richard-son–Lucy deconvolution

RLD), and can be further accelerated by a deep learning method.
wo input images of cells are captured by a dual-view light-sheet mi-
roscopy. Leveraging the information from the two views, the proposed
ramework can produce high-quality results which is much similar to
he ground truth.

.3. Applications of MFSR methods

Multiple frames provide additional spatial and temporal infor-
ation for superior SR results compared to a single frame. For in-

tance, high-frequency information is enhanced by subtracting the
lurred part from the LR image, as demonstrated in [101] that upscales
20p and 1080p to 4K. In another application [72], a multi-frame SR
odel reduces flickering artifacts in the fluorescence time-lapse imag-

ng of fast-moving subcellular organelles, resulting in higher PSNR.
lon et al. [102] improved the spatial–temporal resolution of single-
olecule localization microscopy (SMLM) data to better analyze live

ell dynamics. MFSR often utilizes prior knowledge to enhance out-
omes, as seen in Shen et al.’s edge-guided video SR framework [103],
hich excels in processing real satellite video imagery from Jilin-1 and
VS-1.

. Future works and conclusions

.1. Future works

.1.1. Feasible degradation modeling
While current methods excel with synthetic images, a significant

omain gap between these models and real-world degradation limits
heir generalization to actual scenarios. Bridging this gap is crucial
or practical application, a topic explored in Section 3.3.2 which sug-
ests using single-image degradation modeling. This method requires
atch redundancy across scales, a challenge for SR in surveillance, old
hotos, and films. Another strategy involves utilizing diverse datasets,
hough acquiring large-scale high-quality HR and LR pairs is difficult
n real-world settings. Typically, available datasets are unpaired, with
R and HR images from different sources or captured by different
evices, leading to notable variations that can affect performance.
ddressing these issues, one approach from [34] uses two CycleGANs

o ensure consistency across different source images. Furthermore, Xu
t al. [104] suggest leveraging pre-trained models, which might contain
seful degradation-related information for image restoration. Despite
he potential, integrating these pre-trained models with SR tasks is
hallenging due to their heterogeneity. While research in this area is
till limited, it presents a promising direction for future exploration.

.1.2. Assessment of SR results
As noted in Section 7.2, common metrics like PSNR and SSIM may

ot align with human visual perception in evaluating SR results, given
heir focus on pixel accuracy rather than perceptual quality. Integrating
uman preferences into the SR process offers a solution, allowing for
uanced evaluations beyond simple metric scores. Neural networks

an utilize these preferences to enhance SR performance, viewing this
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Table 3
Dataset details. The datasets above the bold line are SISR datasets, while those below the bold line are MISR
datasets.
Dataset Image number and the

resolution
Description Train/test Setting

DIV2K [84] 1000 images, 2𝐾 Real-world HR images with
synthetic LR counterparts.

Train: 800 images,
Validation: 100 images,
Test: 100 images.

Flickr2K [85] 2650 images, 2𝐾 Real-world HR images with
synthetic LR counterparts.

No explicit setting.

City100 [88] 100 images, 1218 × 870 Real-world LR-HR pairs. No explicit setting.

DRealSR [89] 884 380 × 380 images,
783 272 × 272 images,
840 192 × 192 images.

Real-world LR-HR pairs. Test: 83, 84, and 93 image
pairs at the three scales,
Train: the remaining data.

Set5 [5] 5 images, 313 × 336 Real-world HR images with
synthetic LR counterparts.

Only for test.

Set14 [6] 14 images, 492 × 446 Real-world HR images with
synthetic LR counterparts.

Only for test.

BSD100 [7] 100 images, 432 × 370 Real-world HR images with
synthetic LR counterparts.

Only for test.

Urban100 [86] 100 images, 984 × 797 Real-world HR images with
synthetic LR counterparts.

Only for test.

Manga109 [87] 109 images, 826 × 1169 Real-world HR images with
synthetic LR counterparts.

Only for test.

REDS [90] 300 videos, 1280 × 720 HR images, synthetic LR images. Train: 240 videos,
Validation: 30 videos, Test:
30 videos.

Vimeo-90K [91] 91701 videos, 448 × 256 HR images, synthetic LR images. No explicit setting.

Vid4 [2] 4 videos, 576 × 720,
576 × 704, 480 × 720

Real-world HR images with
synthetic LR counterparts.

No explicit setting.

SPMCS [64] 30 videos, 540 × 960 Real-world HR images with
synthetic LR counterparts.

No explicit setting.
Table 4
Performance of some SISR methods (PSNR/SSIM with 4×Upscaling).
Method category Methods Set5 [5] Set14 [6] BSD100 [7] Urban100 [86] Manga109 [87]

Non-Blind SISR

VDSR [19] (2016) 31.35/0.883 28.02/0.768 27.29/0.726 25.18/0.754 28.83/0.887
RCAN [92] (2018) 32.63/0.900 28.87/0.789 27.77/0.744 26.82/0.809 31.22/0.917
LapSRN [20] (2019) 31.54/0.885 28.19/0.772 27.32/0.727 25.21/0.756 29.09/0.890
ACT [93] (2023) 32.97/0.903 29.18/0.795 27.95/0.751 27.74/0.831 32.20/0.927
HAT [94] (2023) 33.04/0.905 29.23/0.797 28.00/0.751 27.97/0.837 32.48/0.929

Blind SISR

ZSSR [32] (2018) 26.49/0.753 24.93/0.681 25.36/0.652 22.39/0.632 24.43/0.781
IKC [15] (2019) 28.04/0.808 25.85/0.726 26.01/0.695 23.21/0.694 25.82/0.836
DAN [30] (2020) 31.89/0.930 28.43/0.769 27.51/0.808 25.86/0.782 30.50/0.904
KOALAnet [31] (2021) 30.28/0.866 27.20/0.754 26.97/0.717 24.71/0.743 28.48/0.881
DCLS [39] (2022) 32.12/0.889 28.54/0.773 27.60/0.729 26.15/0.781 30.86/0.909
integration as a cross-task challenge potentially addressed by multi-
task learning. However, human involvement is labor-intensive. The
use of pre-trained multi-modal foundation models may alleviate this
by automating preference-based evaluations, where the model scores
images based on human-like preferences during SR model training.

While multi-modal models help quantify human preferences, their
internal workings remain opaque. Understanding these mechanisms
requires further exploration. High-quality SR aligns with human aes-
thetics, a subjective quality that goes beyond mere ground truth accu-
racy. Insights from cognitive science on contexts or textures that attract
human interest could inform the development of evaluation systems
inspired by brain-like intelligence.

9.1.3. Multiple images acquisition with robot motion
Section 5 reviews MISR methods including MFSR, MVSR, and RefSR,

where multiple LR images from varied sources such as video sequences
or multi-view setups consistently serve as input. In MFSR and MVSR,
synergizing the image capture process with robotic movements can en-
hance SR performance. For example, mounting a camera on a robot al-

lows adjustments in proximity, scale, or perspective, transforming SISR

10 
tasks into MISR tasks with multi-view or reference images. Investigating
robotic motion strategies to optimize image capture for improved SR re-
sults, possibly through an iterative process where adjustments are made
based on SR quality, is a promising research direction. Additionally,
evaluating SR results based on human preferences remains relevant.

9.1.4. Motion process SR under physical guidance
Image super-resolution (SR) typically involves increasing image

resolution. Another variant, motion process SR, aims to generate addi-
tional frames between two consecutive frames captured by a camera
with limited frame rates. This is especially useful when observing
microorganisms under a microscope or fast-moving objects with a low-
frame rate camera, as it can produce clearer images and reveal details
that are usually obscured by device limitations. This enhancement is
crucial for analyzing dynamics and interpreting motion mechanisms.
Motion process SR can be guided by known physical properties such
as motion speed, direction, camera distance, frame rate, and imaging
mode. However, effectively incorporating these physical priors into the

motion process SR poses a significant challenge.
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Table 5
Performance of some MISR methods (PSNR/SSIM with 4×Upscaling).

Method category Methods Vid4 SPMCS

Non-Blind MISR
[57] (2020) 27.21/0.822 29.74/0.871
PSRT-recurrent [62] (2022) 28.07/0.8485 –
RRCN [63] (2019) 25.54/0.754 –

Blind MISR [53] (2021) 24.47/0.745 27.53/0.802
[55] (2022) 24.59/0.763 27.77/0.818
9.2. Conclusions

The paper offers a comprehensive review of DL-based SR meth-
ods, focusing on applications rather than technical enhancements.
We discuss SISR and MISR methods and introduce a taxonomy from
an application-oriented perspective that assesses method practicality
across settings, validation datasets, application scenarios, and practi-
cability. Key issues such as the degradation model in SISR and the
benefits of using multiple inputs in MISR are explored. Finally, we
outline several areas for future research to provide insights for the field.
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